Highlights

A biophysical method to study DNA nanosequences for antitumor therapy

The G-quadruplex structural motif of DNA came to be known as a new and stimulating target for anticancer drug discovery. The human telomeric G-quadruplex consists of guanine-rich single strand repeats, which can fold into higher-order DNA structures. Small molecules that interact with the G-quadruplex structures in a selective way may serve as potential therapeutic agents, and have gained impressive interest in recent years.

Control of spin-wave transmission by a programmable domain wall

Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of pinned 90° Néel domain walls in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90° head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range.

Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques

A non-contact method that combines two microspectroscopic techniques can perform mechanical and chemical analysis of single living cells. These properties are intimately connected and assures the correct functionality of cells and tissues: their imbalances can be symptoms and effects of pathologies. Current measurements of cell mechanics require physical contact or they lack in spatial resolution.

A living bio-hybrid system studied by means of a multidisciplinary approach

A multidisciplinary approach to study the functional properties of neuron-like cell models constituting a living bio-hybrid system: SH-SY5Y cells adhering to PANI substrate


One of the more challenging aspects in cognitive or in rehabilitation neurosciences is the design of functional hybrid systems able to mimic the brain functionality, to connect and to exchange information between biological materials, like brain or neurons, and man-made electronic devices.


Pages